
CQF Final Project

A DISSERTATION PRESENTED
BY

VAMSHI KRISHNA JANDHYALA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

CERTIFICATE OF QUANTITATIVE FINANCE

FITCH 7CITY LEARNING
LONDON, UNITED KINGDOM

JANUARY 2013

Thesis advisor: Richard Diamond Vamshi Krishna Jandhyala

CQF Final Project

ABSTRACT

PRICING BASKET CREDIT DEFAULT SWAPS BY COPULA

We discuss the implementation of Gaussian and Student’s t copula

models for pricing k− th to default basket credit default swap

contracts. Calibration procedures are also provided to construct a

credit curve from CDS premiums for a reference entity and to

optimize parameters of the copula based on historical pricing data

for the reference entities of a contract.We discuss the sensitivity of

the spread to several key factors, including the credit quality of the

reference entities, the default correlation among the reference

entities, the recovery rate, and the discount factors.

IMPLEMENTATION OF HJM MODEL

We discuss an implementation of the Heath-Jarrow-Morton model

for pricing zero-coupon bonds and caps by Monte Carlo simulation.

Principal component analysis is used to estimate volatilities of the

model from historical time series data for forward rates. Models

with as many as 10 factors are supported.

iii

Contents

I Pricing Basket Credit Default Swaps by Copula 2

1 PRICING BASKET CDS 3
1.1 k-th to default Basket CDS 3
1.2 Overview of Basket CDS pricing implementation 4

2 COPULAS 8
2.1 Elementary Properties 8
2.2 Gaussian Copula . 10
2.3 Student’s t Copula . 11

3 BUILDING A HAZARD RATE TERM STRUCTURE 14
3.1 Pricing a CDS . 15
3.2 Bootstrapping Hazard Rates 16

4 SENSITIVITY ANALYSIS 19
4.1 Sensitivity Analysis . 19

II Implementation of HJM Model by Monte Carlo
Simulation 24

1 THE HEATH-JARROW-MORTON FRAMEWORK 25

iv

1.1 Overview of the HJM implementation 25
1.2 Forward Rate Equation 26
1.3 One factor HJM model 27

2 IMPLEMENTATION OF THE HJM MODEL 28
2.1 Calibrating the HJM Model using PCA 28
2.2 The Pricing Algorithm 31

3 NUMERICAL RESULTS 36
3.1 Zero-Coupon Bonds . 36
3.2 Caps . 38

APPENDICES 40

A SOFTWARE IMPLEMENTATION 41
A.1 Implentation Details . 41
A.2 Using the software . 42
A.3 Running sample test cases 43

REFERENCES 44

1

PartI

Pricing Basket Credit Default
Swaps by Copula

2

1
Pricing Basket CDS

1.1 K-TH TO DEFAULT BASKET CDS

A BDS is a default swap in which the credit event is the default of
some combination of the credits in a specified basket of credits
(typically from 3 to 5 names). In the particular case of a
first-to-default basket(1st to Def), it is the first credit in a basket of
reference obligors whose default triggers a payment to the
protection buyer. As in the case of a (single name) default swap, this
payment may be cash settled. More commonly, it will involve
physical delivery of the defaulted asset in return for a payment of
the par amount in cash. In return for protection against the 1st to
Def, the protection buyer pays a basket spread to the protection
seller as a set of regular accruing cash flows. As with a default swap,

3

these payments terminate following the first credit event. Similarly
other credit products may be defined such as a second-to-default
basket which triggers a credit event after two or more obligors have
defaulted, and so on from the nth-to-default basket until the
last-to-default basket. Basket Default Swaps are essentially default
correlation products. Hence, the main aspect for pricing is to model
the joint de- fault dependency. The modeling of dependent defaults
is difficult because there is very little historical data available about
joint defaults and because there are usually no reliable quotes in the
market. Therefore, the models cannot be calibrated, neither to
defaults nor to prices. Copula methods are emerging as the favored
pricing approach. Their appeal is principally due to the simplicity
in simulation and to their theoretical framework.

1.2 OVERVIEW OF BASKET CDS PRICING IMPLEMEN-

TATION

We use the following notation and terminology in describing our
pricing algorithm:

• N is the number of reference names.

• Np is the notional principle, which we will normalize to 1.00.

• T is the maturity of the basket default swap and we assume
there are M periods, t1, . . . , tM with tM = T .

• k is the seniority of the basket default swap; that is, the
number of defaults required to trigger a default payment by
the protection seller.

• τn is the time of default of the nth reference entity, for
n = 1, . . . ,N.

4

• τ(k) is the time of the k-th default.

• s is the fair spread of the contract, to be paid 1
δ

times per
annum until T or τk.

• Z(t, T) is the risk free zero coupon bond price as a discount
factor.

• R is the constant recovery rate and L = 1 − R.

• Fn is the distribution function of τn, for n = 1, . . . ,N.

• F(k) is the distribution function of τ(k).

Our implementation of k-th to default basket credit default swap
pricing uses Monte Carlo simulation of a copula model and has the
following main steps:

1. For each reference name, bootstrap implied default
probabilities from quoted CDS and convert them to hazard
rates.

2. Estimate the appropriate inputs for sampling from a copula

(a) Estimate the covariance matrix for the Gaussian Copula

i. Transform the price data to returns data.

ii. Transform the returns data to uniform variates using
empirical marginal distributions.

iii. Estimate the correlation matrix by maximizing the
log-likelihood function of the Gaussian copula
density

(b) Estimate the covariance matrix and degrees of freedom of
StudentT Copula

i. Transform the price data to returns data.

5

ii. Transform the returns data to uniform variates using
empirical marginal distributions.

iii. Estimate the correlation matrix using Kendall’s tau.

iv. Estimate the degrees of freedom by maximizing the
log-likelihood function of the Student’s t copula
density with correlation matrix over a grid.

3. Find a Cholesky factorization , A, of Σ, the covariance matrix
so that Σ = A ·AT .

4. For each simulation, repeat the following routine:

(a) Sample a vector of correlated uniform random variables
from the copula:

i. Sample from a Multivariate Gaussian Copula

A. Draw an N-dimensional vector z of independent
standard normal variates.

B. Set x = A · z.

C. Transform x to a vector of uniform variates, u, by
setting un = Φ(xn), for n = 1, . . . ,N

i. Sample from a Multivariate Student’s t Copula

A. Draw an N-dimensional vector z of independent
standard normal variates.

B. Draw an independent X2
ν random variate s.

C. Set y = A · z.

D. Set x =
√

ν
s z

E. Transform x to a vector of uniform variates, u, by
setting un = tν(xn), for n = 1, . . . ,N.

(b) Use hazard rates of each reference name to convert the
corresponding uniform variable into exact default time.

6

(c) Sort the default times and choose the k-th one, τ(k).

(d) The spread of k-th to default basket credit default swap is
computed by equating the expected value of the
discounted premium leg with the expected value of the
discounted default leg under the risk neutral probability
measure.

The premium leg is

PL = s×Np × δ×
M∑

m=1

Z(0, Tm)× (1 − F(k)(Tm)) (1.1)

Assuming default payment is paid at the end the default
period, the default leg is

DL = (1−R)×Np×
M∑

m=1

Z(0, Tm)× (F(k)(Tm)− F(k)(Tm−1))

(1.2)

It follows that the fair spread is

s =
(1 − R)

∑M
m=1 Z(0, Tm)(F(k)(Tm) − F(k)(Tm−1))

δ
∑M

m=1 Z(0, Tm)(1 − F(k)(Tm))
(1.3)

We may adjust the default leg by substracting the accrued
premium, which, if we assume default can only occur at
the middle of each period, is

AP =
1
2
× s×Np×δ×

M∑
m=1

Z(0, Tm)× (F(k)(Tm)−F(k)(Tm−1))

(1.4)

5. Calculate the average the spread.

7

2
Copulas

In this chapter we will define the Gaussian and Student’s t copulas
and discuss the methods for calibrating them.

2.1 ELEMENTARY PROPERTIES

Definition 1. A d-dimensional copula C : [0, 1]d → [0, 1] is a function
which is a cumulative distribution function with uniform marginals. In
the following the notation C(u) = C(u1, . . . ,ud) will always be used for a
copula. The condition that C is a distribution function immediately leads
to the following properties:

• As cdfs are always increasing, C(u1, . . . ,ud) is increasing in each
component ui.

8

• The marginal in component i is obtained by setting uj = 1 for all
j ̸= i and as it must be uniformly distributed,

C(1, . . . , 1,ui, 1, . . . , 1) = ui (2.1)

• Clearly, for ai ⩽ bi the probability
P(u1 ∈ [a1,b1], . . . ,ud ∈ [ad,bd]) must be nonnegative, which
leads to the so-called rectangle inequality

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1,i1 , . . . ,ud,id) ⩾ 0 (2.2)

where uj,1 = aj and uj,2 = bj.

On the other side, every function which satisfies these properties
is a copula. Furthermore, if we have a d-dimensional copula then
C(u1, . . . ,ud−1) is again a copula and so are all k-dimensional
marginals with 2 ⩽ k < d.

Theorem 1. Sklar Consider a d-dimensional cdf F with marginals
F1, . . . , Fd. There exists a copula C, such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (2.3)

for all xi in [−∞,∞], i = 1, . . . ,d. If Fi is continuous for all i = 1, . . . ,d
then C is unique.

On the other hand, consider a copula C and univariate cdfs
F1, . . . , Fd. Then F is defined on 2.3 is a multivariate cdf with
marginals F1, . . . , Fd.

Corollary 1. Let F be a d-dimensional cdf with continuous marginals
F1, . . . , Fd and define C : [0, 1]d → [0, 1] by

C(u1, . . . ,ud) = F(F−1(u1), . . . , F−1(ud)) (2.4)

9

Then C is a copula and for all (x1, . . . , xd) ∈ Rd

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (2.5)

If F has a density function f and the copula is sufficiently
differentiabls, then Sklar’s theorem allows us to write

c(u) =
∂dC(u1, . . . ,ud)

∂u1 · · ·∂ud
=

f(F−1
1 (u1), . . . , F−1

d (ud))

f1(F
−1
1 (u1)), . . . , fd(F−1

d (ud))
(2.6)

2.2 GAUSSIAN COPULA

To define a Gaussian copula, we need a symmetric, positive definite
matrix, Σ, with unit diagonal entries. Then the multivariate Gaussian
copula with covariance matrix Σ is defined by

C(u1, . . . ,uN;Σ) = N(Φ−1(u1), . . . ,Φ−1(uN); 0,Σ) (2.7)

where N(x1, . . . , xN; 0,Σ) denotes the multivariate Normal
cumulative distribution for mean 0 and covariance matrix Σ and Φ

is the standard normal cumulative distribution. The density for this
copula is obtained from 2.6:

c(Φ(t1), . . . ,Φ(tN);Σ) =

1
(2π)

n
2
√

|Σ|
e−

1
2 t

TΣ−1t

∏N
n=1

1√
2π
e−

1
2 t

2
n

(2.8)

By setting ζ = (Φ−1(u1), . . . ,Φ−1(uN))
T , we see that

c(u1, . . . ,uN;Σ) =
1√
Σ
e−

1
2ζ

T (Σ−1−I)ζ (2.9)

10

2.2.1 CALIBRATING GAUSSIAN COPULA

Calibrating a Gaussian copula to market data is a simple application
of maximum likelihood estimation. Suppose Xt = (X

(t)
1 , . . . ,X(t)

N) for
t = 1, . . . , T + 1 is a time series of adjusted price data for the
reference entities of a basket credit default swap contract. We first
transform the price data to returns data by setting

Y
(t)
n = log

X
(t+1)
n

X
(t)
n

(2.10)

for n = 1, . . . ,N and t = 1, . . . , T . Using 2.9, for Σ a symmetric
positive definite NxN matrix we obtain the log-likelihood of the
returns data as

l(Σ) = −
T

2
ln|Σ|−

1
2

T∑
t=1

ζTt (Σ
−1 − I)ζt (2.11)

As is well known, this function is maximized by taking Σ = Σ̂,
where

Σ̂ =
1
T

T∑
t=1

ζtζ
T
t (2.12)

2.3 STUDENT’S T COPULA

The multivariate Student’s t copula with covariance matrix Σ and ν

degrees of freedom is defined by

C(u1, . . . ,uN;Σ,ν) = T(t−1
ν (u1), . . . , t−1

ν (uN); 0,Σ,ν) (2.13)

where T(x1, . . . , xN;Σ,ν) denotes the Student’s t cumulative
distribution for covariance matrix Σ and ν degrees of freedom and
tν is the cumulative distribution for a univariate Student’s t with ν

11

degrees of freedom. The density for this copula is obtained from 2.6:

c(u1, . . . ,uN;Σ,ν) =
1√
Σ

Γ(ν+N
2)

Γ(ν2)

(
Γ(ν2)

Γ(ν+1
2)

)N
(1 + ζTΣ−1ζ

ν)−
ν+N

2∏N
n=1(1 +

ζ2
n
ν)−

ν+1
2

(2.14)
where ζ = (t−1

v (u1), . . . , t−1
v (uN))

T .

2.3.1 CALIBRATING STUDENT’S T COPULA

Calibrating a Student’s t copula is considerably more difficult
because it requires simultaneaous optimization of the correlation
matrix and the degrees of freedom. There are a number of possible
approaches, including maximum likelihood inference functions for
margins and canonical maximum likelihood (CML). The CML
method approximates the marginals using the corresponding
empirical distributions to avoid simultaneaous optimization.
Besides being more tractable, CML makes no assumptions on the
distributional form of the marginals. For this reason we restrict our
attention to the CML method. The empirical marginal distributions,
denoted by F̂n, are determined by the returns data using the formula

F̂n(y) =
1
T

T∑
t=1

1{Yt
n⩽y} (2.15)

for n = 1, . . . ,N. Using the empirical marginal distributions, we can
transform the returns data into uniform variates by setting

Ut = (U
(t)
1 , . . . ,U(t)

N) = (F̂1(Y
(t)
1), . . . , F̂N(Y

(t)
N)) (2.16)

fot t = 1, . . . , T To further simplify the optimization, we follow [6]
recommendation of estimating the correlation matrix of the
Student’s t copula with Kendall’s tau.

12

Given a time series of adjusted price data Xt = (X
(t)
1 , . . . ,X(t)

N for
t = 1, . . . , T + 1, our calibration procedure is made up of the
following steps:

1. Transform the price data to returns data, {Yt}t, using 2.10;

2. Transform the returns data to uniform variates, {Ut}t, using
2.16;

3. Estimate the correlation matrix, Σ̂, using
Σ̂nm = sin(π2τ(Un,Um));

4. Estimate the degrees of freedom, ν, by maximizing the
log-likelihood function of the Student’s t copula density 2.14
with correlation matrix Σ̂ over a grid.

13

3
Building a Hazard Rate Term

Structure

A key component in our approach to pricing basket credit default
swaps is estimating the instantaneous default probabilities of each
reference entity in the underlying portfolio. In this section we
describe a method of construct- ing a term structure of
instantaneous default probabilities by bootstraping from credit
default swap (CDS) spread data.

In brief, a CDS is used to transfer the credit risk of a reference
entity from one party to another. In a standard CDS contract one
party purchases credit protection from another party, to cover the
loss of the face value of an asset following a credit event. To pay for
this protection, the protection buyer makes a regular stream of

14

payments, known as the premium leg, to the protection seller. The
size of these premium payments is calculated from a quoted default
swap spread which is paid on the face value of the protection. These
payments are made until a credit event occurs or until maturity,
whichever occurs first. If a credit event does occur before the
maturity date of the contract, there is a payment by the protection
seller, known as the protection leg. This payment equals the
difference between par and the price of the cheapest to deliver
(CTD) asset of the reference entity on the face value of the
protection and compensates the protection buyer for the loss. It can
be made in cash or physically settled format.

3.1 PRICING A CDS

To price a CDS we use a simplified method known as the JP Morgan
Approach. In this approach there are N periods, indexed by
n = 1, . . . ,N and each period is of length ∆t, expressed in years. The
end of period maturi- ties are Tn = n∆t. The risk-free forward
interest rate that can be locked in at time 0 for investing over the
period from Tn−1 to Tn is denoted by rn = r(Tn−1, Tn). The discount
factors can then be written as functions othe forward rates:

Dn = D(0, Tn) = exp(−

n∑
k=1

rk∆t)

For a given obligor, we assume that the hazard rate is constant
over forward period n with value λn. The survival probability of
the obligor at the end of period maturities is then given by

Pn = P(τ > Tn) = e−
∑n

k=1 λk∆t

We denote the N-period CDS spread as SN, stated as an annualized

15

percentage of the nominal value of the contract, which, without loss
of gen- erality, we can take to be 1.00. We assume that defaults occur
only at the end of the period so the premiums will be paid until the
end of the pe- riod. Since the premium payments are made as long
as the reference entity survives, the expected present value of the
premium leg (PLN) is

PLn = SN

N∑
n=1

D(0, Tn)Pn∆t

The expected loss payment in period n is based on the probability of
default in period n, conditional on no default in a prior period. This
is given by the probability of surviving until period n− 1 and then
defaulting in period n. It follows that the expected present value of
the default leg (DLN) is

DLN = (1 − R)

N∑
n=1

D(0, Tn)(Pn−1 − Pn)

The fair pricing of the N-period CDS, i.e. the fair quote of the
spread SN, must be such that the expected present value of
payments made by buyer and seller are equal, i.e. PLN = DLN.
From the above discussion, we see that

SN =
(1 − R)

∑N
n=1 D(0, Tn)(Pn−1 − Pn)∑N
n=1 D(0, Tn)Pn∆t

(3.1)

3.2 BOOTSTRAPPING HAZARD RATES

If we know the discount factors Dn and credit default swap fair
spreads for the maturities T1, . . . , TN, we can use 3.1 to b̈ootstrapẗhe

16

hazard rate values. Precisely,

P1 =
L

L+ S1∆t
(3.2)

where L = 1 − R; and

Pn+1 =
LXn −∆tSn+1Yn

dn+1(L+∆tSn+1)
+

PnL

L+∆tSn+1

where

Xn =

n∑
k=1

Dk[Pk−1 − Pk] and Yn =

n∑
k=1

DkPk

Using the procedure just described we obtain survival
probabilities at the maturity times. Now we would like to find a
corresponding stepwise hazard function; that is, we would like
values λ1, . . . , λm so that P(τ > Tn) = e

∑n
i=1 λi(Ti−Ti−1) (where we set

T0 = 0) for n = 1, . . . ,m. A procedure for finding these values is
given below. In that code, T is an array of maturity times and P is an
array of survival probabilities at the maturity times. The algorithm
below returns an array of constants defining the hazard function.

17

Algorithm 1 HazardRates

1: procedure HAZARDRATES(T ,P)
2: t← 0
3: p← 1
4: for i← 1,m do
5: δ← Ti − t

6: λi ← Ti − t

7: p← Pi
8: t← Ti
9: end for

10: return λ

11: end procedure

18

4
Sensitivity Analysis

4.1 SENSITIVITY ANALYSIS

The key factors on which the price of a kth to default credit default
swap depends are

• the recovery rate

• the credit quality of the reference entities

• the default correlation among the reference entities

• the discount factors

In this section we investigate the influence of each of these factors
on the simulated fair spread of a basket credit default swap. To
simplify this sensitivity analysis, we will assume that the short rate

19

is constant, the underlying credit default swap curve is flat and the
same for all reference entities, and that correlation among the
reference entities is pairwise constant.

4.1.1 RECOVERY RATE

Higher recovery rates decrease the fair spread of a basket credit
default swap. This is consistent across seniority. Clearly higher
recovery rates decrease the expected loss so these results are easily
explained. Here is the graph of fairspread vs recovery rate and the
python code for generating the graph

from bcd.entity import ENTITIES, Entity

from bcd.calibration import GaussianCalibrator

from bcd.discounter import SimpleDiscounter

from bcd.bcdpricer import BCDPricer

from numpy import array, arange

from math import ceil

20

from datetime import datetime

import matplotlib.pyplot as plt

def getNoOfPeriods(delta, maturityDate, effectiveDate):

return int(ceil((maturityDate - effectiveDate).days / (365 * delta)))

entities = ["AAL.L", "AGK.L", "ATST.L", "BA.L", "BAY.L"]

delta = 0.5

includeAccruedPremium = True

seniorities = [1, 2, 3]

recoveryRates = arange(0.1, 0.9, 0.1)

noOfSimulations = 10000

mdate = datetime.strptime("20/09/2015", "%d/%m/%Y")

edate = datetime.strptime("20/06/2010", "%d/%m/%Y")

discounter = SimpleDiscounter([0.5, 1.0, 2.0, 3.0, 4.0, 5.0], \

[0.9932727, 0.9858018, 0.9627129, 0.9285788, 0.8891939, 0.8474275])

noOfNames = len(entities)

noOfPeriods = getNoOfPeriods(delta, mdate, edate)

marginals = []

ent_objs = []

for t in entities:

e = Entity(ENTITIES[t],t)

e.calibrate()

ent_objs.append(e)

marginals.append(e.survivalDistribution)

calib = GaussianCalibrator()

pd = array([e.priceData() for e in ent_objs])

cop = calib.calibrate(pd)

fsas = []

for k in seniorities:

21

fss = []

for rr in recoveryRates:

pricer = BCDPricer(noOfNames, k, delta, noOfPeriods, \

rr, discounter, cop, marginals)

price, sims = pricer.price(noOfSimulations, includeAccruedPremium)

fss.append(price*10000)

fsas.append(fss)

plt.plot(recoveryRates, fsas[0], ’bo-’, label="Seniority-1")

plt.plot(recoveryRates, fsas[1], ’ro-’, label="Seniority-2")

plt.plot(recoveryRates, fsas[2], ’go-’, label="Seniority-3")

plt.title("Gaussian")

plt.xlabel("Recovery rate")

plt.ylabel("Fair Spread")

plt.legend()

plt.show()

4.1.2 CREDIT QUALITY

In addition to the general simplifying assumptions mentioned
above, if we also assume a constant recovery rate, a fixed pairwise
default correlation among reference entities and a constant spot
interest rate then it can be shown that the basket credit default
premiums increase with increasing premiums for the underlying
CDS curve.

4.1.3 DEFAULT CORRELATION

The premium for 1st to default basket credit default swap decreases
as the pairwise default correlation increases. For 2nd or 3rd to
default basket credit default swaps however, premiums appear to
increase as the pairwise default correlation increases though the

22

effect is quite small.

4.1.4 DISCOUNT FACTORS

The influence of discount factors can be explored by considering
constant shifts in the yield curve, i.e by letting the short rate vary.
Assuming a constant recovery rate,a fixed pairwise default
correlation among reference entities, it can be shown that the fair
spread value of a basket credit default swap does not vary much
with the discount factors.

23

PartII

Implementation of HJM Model
by Monte Carlo Simulation

24

1
The Heath-Jarrow-Morton

Framework

The Heath-Jarrow-Morton (HJM) framework is a general
framework within which specific no-arbitrage models can be
implemented. In a HJM model the whole yield curve is modelled in
terms of forward rates because the no-arbitrage condition has a
particularly simple form in this approach and the initial
forward-rate curve is a part of the input.

1.1 OVERVIEW OF THE HJM IMPLEMENTATION

1. Relate the bond prices to the instantaneous forward rates.

2. Model the bond prices using a single or multi factor Stochastic

25

Differential Equation(SDE).

3. Obtain a model(SDE) for the forward rate curve using the
bond price model and the relation between bond prices and
forward rates.

4. Derive the risk neutral drift in terms of volatilities using no
arbitrage conditions.

5. Use Musiela parametrization to simplify the volatility
structure used for implementation.

6. Discretize the forward rate SDE.

7. Perform PCA to calibrate the discrete volatility using historic
forward rate time series data.

8. Perform Monte Carlo simulation to calcuate prices of zero
coupon bonds and interest rate derivatives like caps, floors etc.

1.2 FORWARD RATE EQUATION

The key concept of the HJM Model is that we model the evolution
of the whole forward rate curve, not just the short end. Let Z(t, T)
denote the price at time t of a zero-coupon bond maturing at time T

and having face value 1. Recall that the forward rate f(t, T)
represents the instantaneous continuously compounded rate
contracted at time t for riskless borrowing or lending at time T > t.

If f(t, T) is known for all values 0 ⩽ t ⩽ T , then

Z(t, T) = e−
∫T
t f(t,v)dv, 0 ⩽ t ⩽ T (1.1)

From the above we also have

f(t, T) = −
∂

∂T
logZ(t, T). (1.2)

26

1.2.1 RISK-FREE RATE OF INTEREST AND THE SHORT RATE

The instantaneous risk-free rate of interest is related to the
instantaneous forward rate of interest in the following manner

r(t) = f(t, t) (1.3)

r(t) can be interpreted as the rate of interest on a bank account:this
can be changed on a daily basis by the bank with no control on the
part of the investor or bank account holder. r(t) is referred to as the
short rate.

1.3 ONE FACTOR HJM MODEL

We take the initial forward-rate curve f(0, T) as our starting
point.For a fixed maturity, T , f(t, T) is an Itô process satisfying

df(t, T) = µ(t, T)dt+ σ(t, T)dW(t) (1.4)

for each T > t, where µ(t, T) and σ(t, T) may depend upon f(t, T),
or the whole forward-rate curve at time t, or, even more generally,
upon Ft = σ(W(s) : s ⩽ t).

In a one-factor model, we define, for all maturities T , Itô processes
that are dependent upon the same one-dimensional source of
uncertainty W(t). It follows that changes over the whole of the
forward-rate curve are perfectly but non-linearly correlated.

1.3.1 DRIFT UNDER NO ARBITRAGE CONDITIONS

Under no-arbitrage conditions, the drift and volatility are related as
follows

µ(t, T) = σ(t, T)
∫ T
t

σ(t, v)dv (1.5)

27

2
Implementation of the HJM

model

2.1 CALIBRATING THE HJM MODEL USING PCA

The diffusion process is the same in the dynamics of forward rates
under the real world measure as it is in the dynamics under the
risk-free measure, we can use historical data to estimate the
diffusion, σ(t, T), in the HJM model.

Assume that σ(t, T) is of the form

σ(t, T) = σ̃(T − t) (2.1)

for some deterministic function σ̃(τ). We will choose σ̃(τ) to

28

match historical data. The forward rate evolves according to the
SDE

df(t, T) = µ(t, T)dt+ σ̃(T − t)dW(t); 0 ⩽ t ⩽ T (2.2)

Suppose we have observed this forward rate at times
t1 < t2 < · · · < tJ < 0 in the past and the forward rate we observed
at those times was for the relative maturities τ1 < τ2 < · · · < τK; that
is, we have observed f(tj, tj+ τk) for j = 1, . . . , J and k = 1, . . . ,K.
Suppose further that for some small positive δ we have also
observed f(tj+ δ; tj+ τk), where δ is sufficiently small that
tj+ δ < tj+1 for j = 1, . . . , J− 1 and tJ+δ < 0. According to our
model,

f(tj+δ, tj+τk)− f(tj, tj+τk) ≈ δµ(tj, tj+τk)+ σ̃(τk)(W(tj+δ)−W(tj))

Let
Dj,k ≈

√
δµ(tj, tj + τk) + σ̃(τk)

W(tj + δ) −W(tj)√
δ

(2.3)

Since the first term in this equation contains
√
δ, it is small relative

to the second term. So, for

Xj =
W(tj + δ) −W(tj)√

δ
, j = 1, . . . , J (2.4)

which is a standard normal random variable.we have

Dj,k = σ̃(τk)Xj (2.5)

But the Xi, . . . ,XJ are not only standard normal random variables,
they are also independent. This means we can regard D1,k, . . . ,DJ,k

as independent observations taken at times t1, . . . , tJ on forward
rates, all with the same relative maturity τk. The empirical

29

covariance is

Ck1,k2 =
1
J

J∑
j=1

Dj,k1Dj,k2

The theoretical covariance, computed from the right-hand side of
2.5, is

E[σ̃(τk2)X
2
j] = σ̃(τk1)σ̃(τk2)

We would like to find σ̃(τ1), . . . , σ̃(τK) so that

Ck1,k2 = σ̃(τk1)σ̃(τk2),k1,k2 = 1, 2, . . . ,K (2.6)

To determine a best choice of σ̃(τ1), . . . , σ̃(τK), we use principal
component analysis.Let

C = λ1e1e
T
1 + λ1e2e

T
2 + · · ·+ λKeKe

T
K,

where λ1 ⩾ λ2 · · · λK ⩾ 0 are the eigenvalues of C and the column
vectors e1, e2, . . . , eK are the orthonormal eigenvectors. As noted
above, we would like to find σ̃(τ1), . . . , σ̃(τK) so that

C =

σ̃(τ1)

σ̃(τ2)
...

σ̃(τK)

[
σ̃(τ1) σ̃(τ2) . . . σ̃(τK)

]

but this may not be possible to do exactly. The best approximation is
σ̃(τ1)

σ̃(τ2)
...

σ̃(τK)

 =
√

λ1e1

30

2.2 THE PRICING ALGORITHM

The implementation of the HJM model uses Monte Carlo to
simulate . However, except for very simple cases of σ, exact
simulation of is not feasible and one must resort to discrete
approximation. We will follow [1] Section 3.6.2 and 3.6.3) quite
closely.

Discrete approximation of forward rates will require
discretization of both arguments of f(t, T).To simplify notation we
will fix a time grid 0 = to < t1 < ti < ti+1 < · · · < tM for the first
argument and then for each fixed time ti we will use the subgrid
ti < ti+1 < · · · < tM for the second argument. At each step, we need
only the vector of current rates. tM = T∗ is our time horizon, so tM is
the maturity of the longest-maturity bond represented in the model.
This means that the last forward rate relevant to the model applies
to the interval [tM−1, tM], the forward rate with maturity argument
tM−1. We use f̂(ti, ti+1) to denote the discretized forward rate for
maturity tj as of time ti, j ⩾ i. Thus, our initial vector of forward
rates consists of the M components f̂(0; 0), f̂(0, t1), . . . , f̂(0, tM−1).

2.2.1 INITIAL FORWARD RATE CURVE

We use Ẑ(ti, tj) to denote the discretized zero-coupon bond price so
that

Ẑ(ti, tj) = exp

−

j−1∑
l=i

f̂(ti, tl)(tl+1 − tl)

 (2.7)

To minimize discretization error, we would like the initial values
of the discretized zero-coupon bonds Ẑ(0, tj) to match the exact
values Z(0, tj) for all maturities tj on the grid. From 1.1 and 2.7 it

31

follows that this holds if

j−1∑
l=1

f̂(0, tl)(tl+1 − tl) =

∫ tj
0
f(0, v)dv

that is if

f̂(0, tl) =
1

tl+1 − tl

∫ tl+1

tl

f(0, v)dv, (2.8)

for all l = 0, 1, . . . ,M− 1. So we should initialize f̂(0, tl) to the
average level of the forward curve f(0, T) on the interval [tl, tl+1].

2.2.2 USING DISCRETIZED SDE FOR TIME STEPPING

As the simulation evolves, the number of relevant rates decreases:
at time ti we are only interested in the rates
f̂(ti, ti), f̂(ti; ti+1), . . . , f̂(ti, tM−1). We represent these M− i rates
remaining at time ti as the vector (f1; . . . ; fM−i). Thus we are
indexing forward rates by relative maturity, as done in the Musiela
parametrization.

Similar notational conventions will be used for µ̂(ti, tj) and
σ̂k(ti, tj),k = 1, . . . ,d we use mj for µ̂ and sj(k) for σ̂k. Thus the
simulation step from ti−1 to ti becomes

fj ← fj+1 +mj[ti − ti−1] +

d∑
k=1

sj(k)
√
ti − ti−1Zik, j = 1, . . . ,M− i,

where
mj = µ̂(ti−1, ti+j−1), sj(k) = σ̂k(ti−1, ti+j−1)

Our implementation of the HJM simulation is broken into to main
parts: one calculating the discrete drift parameter at a fixed time
step and the other looping over time steps and updating the
forward curve at each step.

32

Calculating the discrete drift parameter amounts to evaluating

µ̂(ti−1, ti+j−1) =
1

2hj

 d∑
k=1

 j∑
l=i

σ̂k(ti−1, tl)hl+1

2

−

d∑
k=1

 j−1∑
l=i

σ̂k(ti−1, tl)hl+1

2

2 achieves this in a way that avoids duplicate computation. In the
notation of the algorithm, the drift parameter is evaluated as

1
2(tj+1 − tj)

[Bnext −Bprev]

and each Anext(k) records the quantity

j∑
l=i

σ̂k(ti−1, tl)hl+1

The inputs are the volatilities
s = {sj(k) : j = 1, . . . ,M− i,k = 1, . . . ,d}, the intervals
h = {hl : l = 1, . . . ,M} (where hl = tl − tl−1), and the step index i.

3 implements a single replication of the pricing procedure in an
HJM simulation, which is repeated many times to estimate a
product price. This algorithm calls 2 to calculate the discrete drift
for all remaining maturities at each time step. The key step in the
algorithm used to value interest rate derivatives is

P ⇐ cashflow at ti

where, of course, the particular instrument determining the
cashflow at ti must be provided as input. The remaining inputs are
the initial curve f = {fl : l = 1, . . . ,M} and the intervals
h = {hl : l = 1, . . . ,M}.

33

Algorithm 2 UpdateDrift(s,h,i)

procedure UPDATEDRIFT(s,h, i)
Aprev = 0, k = 1, . . . ,d
for j = 1 to M− i do

Bnext = 0
for k = 1 to d do

Anext(k) = Aprev(k) + sj(k)× hi+j

Bnext = Bnext +Anext(k)×Anext ×Anext(k)
Aprev(k) = Anext(k)

end for
mj = (Bnext −Bprev)/(2hi+j)
Bprev = Bnext

end for
return (mi, . . . ,mM−i)

end procedure

34

Algorithm 3 PresentValue

procedure PRESENTVALUE(f,h,product)
D = 1,P = 0,C = 0
for i = 1 to M− 1 do

D = D× e−f1×hi

for j = 1 to M− i do
for k = 1 to d do

sj(k) = σ̂k(ti−1, ti+j−1)
end for
(m1, . . . ,mM−i) = UpdateDrift(s,h, i)

end for
generate Z1, . . . ,Zd ∼ N(0, 1)
for j = 1 to M− i do

S = 0
for k = 1 to d do

S = S+ sj(k)×Zk

end for
fj = fj+1 +mj × hi + S×

√
hi

end for
P = cashflow at ti (depending on the instrument)
C = C+D× P

end for
return (C)

end procedure

35

3
Numerical Results

In this chapter we describe the results of applying our
implementation of the HJM model to pricing some simple
fixed-income products e.g. caps.

3.1 ZERO-COUPON BONDS

Zero coupon bond prices can be computed from the initial forward
curve, using the formula:

Z(0, tj) ≈ Ẑ(0, tj) = e−
∑j−1

l=0 f̂(0,tl)(tl+1−tl)

However, this provides one way to test the implementation. This
means that if we use our simulation to price a bond, then the results

36

should converge to the value to which the model was initially
calibrated. The table below compares simulated and analytic prices
for several zero-coupon bonds with face value of 1:00.

Maturity ZCB Price Analytic ZCB Price Simulated
1 Month 0.999558430854 0.999133691333

1 Quarter 0.998692522162 0.998234730251
1 Year 0.994042814814 0.993407538138
2 year 0.982783264698 0.981436508441
5 Year 0.902187117285 0.897855729498

10 Year 0.703925090987 0.689221048009

The python code used for obtaining the above values is given
below

from hjm.hjmpricer import *

principal = 1.0

product = "ZCB"

maturities = [0.084, 0.25, 1.0, 2.0, 5.0, 10.0]

int_rate = 0.4

freq = 0

factors = 3

nsims = 10000

print "Analytic ZCB Price", "|", "Sim ZCB Price"

for m in maturities:

hjmp = HJMPricer(principal, product, m, int_rate, freq, factors, nsims)

(simprice, sims), pca = hjmp.getHjmPrice()

print hjmp.getZCBPrice(), "|", simprice

37

3.2 CAPS

A caplet is an interest rate derivative providing protection against
an increase in an interest rate for a single period. A cap is a portfolio
of caplets covering multiple periods. The caplet is like a call option
on the short rate, having a payoff of the form (r(T) − R)+ for
maturity T and fixed rate R. The underlying rate in a caplet applies
over and interval and is based on discrete compounding. To
simplify the implementation, we will assume the interval has the
form [ti, ti+1]. At ti the continuously compounded rate for this
interval is f̂(ti, ti); the corresponding discretely compounded rate F̂

satisfies
1

1 + F̂(ti)[ti+1 − ti]
= e−f̂(ti,ti)[ti+1−ti] (3.1)

so that,

F̂(ti) =
1

ti+1 − ti

(
e−f̂(ti,ti)[ti+1−ti] − 1

)
(3.2)

The payoff of the caplet would then be F̂(ti) − R)+ (times the
principal). The payment is made at the end of the interval, ti+1, and
so must be discounted back to ti, which leads to

P = e−f1hi+1

(
1

hi+1
(ef1hi+1 − 1) − R

)+

(3.3)

Some cap prices computed using our implementation are given
below. These all have tenor one quarter and interest rate 0.4%
(Number of simulations = 10000).

The python code used for obtaining the above values is given
below

from hjm.hjmpricer import *

principal = 1.0

38

Maturity Simulated Cap Price
1 Quarter 0.00130178679059

6 Month 0.00310862528672
1 Year 0.00888973584619
5 Year 0.348849093993

10 Year 1.18296755777

product = "CAP"

maturities = [0.25, 0.5, 1.0, 5.0, 10.0]

int_rate = 0.4

freq = 0.25

factors = 3

nsims = 10000

print "Sim CAP Price"

for m in maturities:

hjmp = HJMPricer(principal, product, m, int_rate, freq, factors, nsims)

(simprice, sims), pca = hjmp.getHjmPrice()

print simprice

39

Appendices

40

A
Software Implementation

A.1 IMPLENTATION DETAILS

The implementation of the BCD and HJM models is done using
Python 2.7 making use of numeric libraries like numpy and scipy.
To improve the performance of the code, Cython was used.

A.1.1 LEARNINGS

Python was used as it is a highly expressive and readable language
with a very extensive set of libraries. The high expressiveness
enables us to write very compact code which reveals the structure of
the numerical procedure clearly. It also makes it easy to validate the
correctness of the implementation. Unfortunately optimizing the
Python code for performance was not as easy as expected. Monte

41

Carlo simulations can be very efficiently executed in parallel but
writing parallel programs in Python is not straightforward. Here
are a few alternative ways of implementing the numerical
procedures to make them more peformant:

1. Implement the procedures in a language like Julia which is
highly performant and provides powerful parallel primitives.

2. Implement the code which needs to be optimized in C/C++
and use Boost Python or SWIG to invoke it from python code

Optimizing Python by implementing certain parts in Cython can be
tricky as benefits of generating and executing C code can be offset
by the back and forth type conversions between C and Python code.

A.2 USING THE SOFTWARE

Copy all the contents(a folder named “cqf_vamshi_Jan13”) of the
CD onto the local machine. All the data required by the application
is stored in a directory called “data” in the root folder. All the
python packages that are required for the project are part of
standard free python distributions like Anaconda or Canopy
express. In addition to one of the python distributions mentioned
above, a C compiler is required to compile the cython extension
modules to C. All the dependencies can be downloaded and the
cython extension modules can be compiled by running the
following commands .

cd cqf_vamshi_Jan13
pip install -r requirements.txt

42

A.3 RUNNING SAMPLE TEST CASES

Sample test cases can be executed by first modifying the
testhjm.yaml and testbcd.yaml files and then running the
coresponding testhjm.py and testbcd.py files. The yaml files are
human readable and editable in a text editor. Instructions provided
in the yaml files should be carefully followed and the indentation in
the files should not be changed. The commands for executing the
test cases are as follows

python testhjm.py
python testbcd.py

43

References

[1] Glasserman, P., Monte Carlo Methods in Financial Engineering,
Springer, New York, 2003.

[2] Shreve, Steven E., Stochastic Calculus for Finance II:
Continuous-Time Models, Springer, New York, 2004.

[3] Wilmott, Paul, Paul Wilmott on Quantitative Finance, Wiley,
New York, 2000.

[4] Nelsen, R.B., An introduction to Copulas, Springer, New York,
2006.

[5] Lindskog F., McNeil, A. and Shmock, U., Kendalls tau for
elliptical distributions. Working paper, Risklab ETH Zurich,
2001.

[6] Mashal, R. and Zeevi, A., Beyond Correlation: Extreme
Comovements Between Financial Assets. Working paper,
Columbia Graduate School of Business, 2002.

44

	I Pricing Basket Credit Default Swaps by Copula
	Pricing Basket CDS
	k-th to default Basket CDS
	Overview of Basket CDS pricing implementation

	Copulas
	Elementary Properties
	Gaussian Copula
	Student's t Copula

	Building a Hazard Rate Term Structure
	Pricing a CDS
	Bootstrapping Hazard Rates

	Sensitivity Analysis
	Sensitivity Analysis

	II Implementation of HJM Model by Monte Carlo Simulation
	The Heath-Jarrow-Morton Framework
	Overview of the HJM implementation
	Forward Rate Equation
	One factor HJM model

	Implementation of the HJM model
	Calibrating the HJM Model using PCA
	The Pricing Algorithm

	Numerical Results
	Zero-Coupon Bonds
	Caps

	Appendices
	Software Implementation
	Implentation Details
	Using the software
	Running sample test cases

	References

